

ANDREAS OLOFSSON

PROGRAM MANAGER DARPA, MTO

DARPA IS BUILDING A SILICON COMPILER

ANDREAS OLOFSSON PROGRAM MANAGER DARPA/MTO

DARPA'S \$100M HARDWARE COMPILER INVESTMENT

END STATE – THE FIRST GENERAL PURPOSE SILICON COMPILER

- \$ git clone https://github.com/darpa/idea
- \$ git clone https://github.com/darpa/posh
- \$ cd posh
- \$ make soc42

Image Sources: Amazon, NVIDIA

SELECTED PROGRAM PARTICIPANTS

Academic Partners

University of University of Purdue California at Michigan Carnegie San Diego Boston

University Stanford

Princeton University of University Washington

Brown Purdue Yale University University

U of University **Minnesota** of Utah

University of Texas at Dallas

Mellon University

University of Illinois at Urbana

Champaign

University

of Southern California

Cairo University

University of Virginia

Commercial Partners

Cadence Design Synopsys **Systems**

LeWiz

ARM Intel

Qualcomm

NVIDIA Xilinx

JITX Northrop

Grumman Global

MOSIS Foundries

Analog Circuit Works Lockheed

Martin

Analog

Devices

Sandia **National**

Laboratories

WHAT IT TAKES TO BUILD A HARDWARE COMPILER

SAMPLE OF PROGRAM RESEARCH EFFORTS

Cadence Design Systems

Analog Layout

University of Washington

Open source analog IP

NG/JITX

Design by intent

Yale

Asynchronous Design

University of California at San Diego

Digital Layout

Synopsys

Mixed Signal Emulation

University of Washington

RISC-V

Xilinx

Mixed HW/SW Emulation

IDEA: A UNIFIED ELECTRICAL CIRCUIT LAYOUT GENERATOR

- Knowledge embedded in humans
- Limited knowledge reuse
- Reliance on scarce resources

- Knowledge embedded in software
- 100% automated hardware compilation
- 24 hour turnaround

IDEA: NO HUMAN IN THE LOOP DIGITAL AND ANALOG LAYOUT!

IDEA: INTENT-DRIVEN SYSTEM SYNTHESIS

Intent: Specify what, not how!

Most true board specifications

should be very minimal.

5V Ethernet

USB

HDMI

1GB RAM

128MB Flash

FPGPA

20 GFLOPS

ARM A9

Image source: Adapteva

Derived: 500 Parts, voltage levels, placement,

routing, connectivity

IDEA: AN OPEN 5M+ COMPONENT IC DATABASE

- 5M+ parts in circulation
- Information embedded in datasheets and reference designs
- No standard models
- Automatic optimization not possible

- IC standard models (LEF,LIB,IP-XACT)
- Extend standards for boards / SIPs
- Creation of 5M+ part DB
- Model all properties needed for constraintbased system optimization

POSH: EXPECTED PROGRAM RESULTS

Image sources: Farhek, Wikipedia, EE Times

DISTRIBUTION STATEMENT A: Approved for public release.

SILICON COMPILER PROGRAM SCHEDULE

- \$ git clone https://github.com/darpa/idea
- \$ git clone https://github.com/darpa/posh
- \$ cd posh
- \$ make soc42

• Program Kickoff

• First Integration Exercise

• Alpha Release, working code

Working Beta Silicon Compiler

2020 • 50% PPA

Program Completion

2022 • 100% PPA

Image Source: Raspberry Pi

TIME

Time	Distance
1 ns	Foot
1 us	Eiffel Tower
1 ms	NY to Boston

Image Source: U.S. Naval History

GRAVITY

Image Sources: Drone Air, IBM

SPACE

- Original Intel 4004
- 2,300 transistors
- Fits in a cell at 3nm?

Image Sources: Intel, CGTrader

DISTRIBUTION STATEMENT A: Approved for public release.

DAVIDWHITE

SR. DIRECTOR R&D, CADENCE

MAGESTIC: MACHINE LEARNING FOR AUTOMATIC GENERATION OF ELECTRONIC SYSTEMS THROUGH INTELLIGENT COLLABORATION

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA)

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government

cadence WHO WE ARE

Cadence provides leading electronic design automation (EDA) software and hardware for chip, package, board, and system design as well as semiconductor intellectual property

7,200+ employees

Q4 FY17

revenue:

\$502M

21 countries

20 new products and 50+ new IP products in the past 3 years

FY12 - 17 Revenue (\$B)

\$804M in R&D investment in 2017

40% of revenue invested in R&D

Broad portfolio of electronics design and IP products

Distribution Statement A- Approved for Public Release, Distribution Unlimited

CHALLENGES TO PRODUCTIVITY IN DESIGN TODAY

Respins increase cost of electronics

- IDEA MAGESTIC will:
 - Improve productivity
 - Reduce design costs
 - Improve electronics
 - Reliability
 - Performance
 - Power

cadence

MAGESTIC FLOW USES MACHINE/DEEP LEARNING

INTELLIGENT DESIGN FLOW FOR CUSTOM ICS

IDEA goals:

- Cloud enabled
- No human in loop
- •<24-hr TAT
- Acceptable quality of results

ML-BASED PLACEMENT OF CUSTOM IC DESIGN

*layout images are for demonstration purposes only

Test Train	1	2
1	100%	97.7%
2	91.0%	100%

Distribution Statement A- Approved for Public Release, Distribution Unlimited

DEEP LEARNING-BASED AUTOMATIC PLACEMENT OF PCB

LEARNING-BASED AUTOMATIC ROUTING OF PCB

LEARNING PLACEMENT FOR PCB IN ORBITIO DESIGNER

ANDREW B.KAHNG

UC SAN DIEGO

THE DESIGN CHALLENGE

 Enormous barriers to hardware design in advanced technologies: Cost, Expertise, Unpredictability

Source: DARPA

Distribution Statement A- Approved for Public Release, Distribution Unlimited

HOW IS IT DONE TODAY?

- Hardware design tools have evolved into complex "Swiss army knives"
- Chaos when tools are forced to "try hard"

"LOCAL MINIMUM" OF HW DESIGN

Today: in a "local minimum" of design technology, methodology, and quality

Distribution Statement A- Approved for Public Release, Distribution Unlimited

NEW IN OUR APPROACH

24 hours, no humans — no PPA loss

Extreme partitioning

Parallel optimization

Machine Learning of tools, flows

Restricted layout

Design Complexity

Distribution Statement A- Approved for Public Release, Distribution Unlimited

FOUNDATIONS OF OUR APPROACH

- No Humans: tools must adapt and self-tune, must never get stuck unexpectedly
- 24 hours: extreme partitioning of problems
 - + parallel search on cloud
 - + machine learning for predictability
- Mantra: Correctness and safety by construction
- Mantra: Embrace freedom from choice

A NEW DESIGN PARADIGM

TECHNICAL CHALLENGES

- Data: small and expensive!
- Humans: are in the loop for good reasons!
- Fundamental tradeoffs: analysis cost vs. accuracy, optimization effort vs. quality
- Activation energies: new sharing mindsets, open-source ecosystem

OUR GOAL

- 24-hour, No-Human-In-Loop layout design for SOC, Package and PCB with no Power-Performance-Area (PPA) loss
- Tapeout-capable tools in source code form, with permissive licensing → seed future "Linux of EDA"

IMPACT IF SUCCESSFUL

- Create new "Base Technologies" that enable 24-hour, autonomous design
 - Extreme partitioning (bite-sized problems)
 - Parallel search and optimization
 - Machine learning: models of tools, designs
- New paradigm for design tools and methods: autonomy first
- Bring down barriers → democratize HW design

IMPACT ON DESIGN COST

- Embedded vision chips (28nm/16nm) from Michigan Internal Design Advisors team
- Layout @Michigan: 10+ weeks, significant resource
- OpenROAD and IDEA goal: 1 day, no humans (!)

Distribution Statement A- Approved for Public Release, Distribution Unlimited

SWINGING FOR THE FENCES

 Must achieve critical mass and critical quality

University of California - SD	Qualcomm
ARM	University of Minnesota
Brown University	University of Michigan
University of Illinois – UC	University of Texas - Dallas

11 of 13 IDEA TA-1 subtasks+ Base Technologies, Design

Common	Databases /- Processing	
Infrastructure _	Cloud Infrastructure	Brown
✓	Timing Analysis	UCSD
✓	Parasitic Extraction	UMN
✓	Readers + Writers	UTD
✓	Power and SI Analysis	UMN
	Logic Synthesis	Brown
Generators	Floorplanning	UIUC
✓	Placement	UTD, UCSD
✓	Clock Tree Synthesis	UCSD
✓	Detailed Routing	UTD, UIUC
✓	Layout Finishing	UTD, UCSD
Design	SoC-Design-Advisors	

Distribution Statement A- Approved for Public Release, Distribution Unlimited

SWINGING FOR THE FENCES

- Internal Design team (Michigan)
 ~70 Ph.D., 50 M.S. graduates
 - + 15 new SOC designs each year

- Tools team (UCSD, Illinois, UMinn, UT-Dallas, Brown):
 - ~150 Ph.D., 80 M.S. graduates
 - + many tools, engines "on the shelf"
- Qualcomm: HW design, SOC-Pkg-PCB
- Arm: IP, system design + ML guidance

AND MORE ...

Open-sourcing of commercial timing engine

Parallax Software

- Donated commercial tool source code base
- Industry advisors and technical contributors
 - Dr. Chi-Ping Hsu, Avatar
 - Dr. Noel Menezes, Intel
 - Dr. Richard Ho, Google

•

Worldwide outreach, engagement, support ...

National Taiwan University

KAIST

Universidade Federal de Rio Grande do Sul

CUHK

Seoul National University

Intel

Google

GLOBALFOUNDRIES

Avatar Integrated Systems

Distribution Statement A- Approved for Public Release, Distribution Unlimited

CLARKBARRETT

STANFORD UNIVERSITY

THE VERIFICATION CHALLENGE

- Systems on a Chip (SoCs)
 - Growing in size and complexity
 - Single chip contains multiple cores, caches, accelerators
- SoC Verification
 - SoCs used in critical applications
 - Correctness is essential
 - Failures can be extremely costly (Intel FDIV: \$500M)
 - Verification dominates design

THE VERIFICATION CHALLENGE

Verification takes roughly twice as long as all other pre-fab design activities combined

-Data from DARPA CRAFT proposer's day slide

Ultimately the reason I don't think it [open-source hardware] has taken root in the hardware community is verification.

-Bill Chappell in IEEE Spectrum Interview, July 16, 2018

FORMAL VERIFICATION

- Has potential to revolutionize verification
 - Better than testing: covers all possible cases
 - Already used extensively in industry
 - But there are many challenges
- Three main steps
 - Create a mathematical model of the system
 - Specify formally what the properties of the system should be
 - Prove that the model has the desired properties

FORMAL VERIFICATION

Upscale: Scaling up formal tools for POSH Open Source Hardware
Clark Barrett, Mark Horowitz, Subhasish Mitra (Stanford)
Aarti Gupta, Sharad Malik (Princeton)
Distribution Statement A- Approved for Public Release, Distribution Unlimited

MODELING

- Good news: HDL descriptions are already a formal model
- Challenges
 - Lack of non-commercial tools that can handle real designs
 - Analog / mixed-signal components
 - Closed-source IP can't be modeled precisely
- Solutions
 - Finally! high-quality open-source toolchains are emerging
 - AMS circuits can often be approximated by digital circuits
 - New initiatives to build open-source hardware

UPSCALE OPEN-SOURCE TOOLCHAIN

- Yosys: open-source front-end for Verilog
- CoreIR: "LLVM for hardware" open intermediate representation
- CoSA (CoreIR Symbolic Analyzer): open-source formal analysis (model checking, bounded model checking)
- CVC4: open-source SMT solver

SPECIFICATION

- Challenges for today's techniques (e.g. assertion-based verification)
 - Requires design knowledge
 - Requires manual effort
 - If incomplete, then will miss bugs
- Solutions
 - Integrated verification and design
 - Symbolic QED no manual specification needed
 - Instruction-Level Abstraction enables analysis of non-core SoC components

INTEGRATED VERIFICATION EXAMPLE: CONSTANT FOLDING

- Comparison of a CoreIR design before and after optimization pass
- CoreIR optimization pass provides information about constants folded directly to CoSA
- Significant performance improvement: 1.3 min vs. timeout (2 h)

Distribution Statement A- Approved for Public Release, Distribution Unlimited

QUICK ERROR DETECTION

- Quick Error Detection (QED)
 - Technique developed by Subhasish Mitra's group
 - Uses shadow registers and memory
 - Applies duplicate and check transformation to improve tests

	Regular	Shadow
Registers	R0-R15	R16-R31
Memory	0x10000-0x1FFFF	0x20000-0x2FFFF

Distribution Statement A- Approved for Public Release, Distribution Unlimited

SYMBOLIC QUICK ERROR DETECTION

- Combines formal methods with QED
 - Leverages idea of self-consistency (Jones '96)
 - Does there exist any sequence of instructions that would fail a QED test
 - Searches all possible sequences using bounded model checking
 - Runs automatically overnight
- Early Results are promising
 - OpenSPARC T2: found 92/92 tough bugs automatically
 - · Few minutes to few hours each
 - Each found bug returned a bug trace of less than 10 instructions
 - RIDECORE: (open-source out-of-order Risc-V core)
 - Automatically found previously unknown bug
 - Bug was reported and fixed

SYMBOLIC QUICK ERROR DETECTION

- Theoretical result: SQED is complete for large class of bugs
 - SQED can find essentially all bugs in processor cores
 - Limited only by the power of the bounded model checker
- Can be extended beyond processor cores
 - Same idea can be used for accelerators
 - Instruction-level abstraction (ILA) developed by Malik and Gupta (Princeton) makes accelerators look like processors
- Techniques for scaling up (work in progress)
 - Symbolic initial states
 - Automatic design partitioning
 - Abstraction of uninteresting components

PROVING

- Challenges
 - Manual proofs require enormous effort
 - Automated techniques limited to small designs
- Solution:
 - Better Solvers!

EVOLUTION OF SMT SOLVING

Quantifier-Free Bitvector (QF_BV) SMT-LIB benchmarks

- Comparison of virtual best SMT solvers since 2010
- Evaluation on 39610 benchmarks (SMT-LIB 2018)
- 41 different families of benchmarks

EVOLUTION OF SMT SOLVING

THE ROAD TO EVEN BETTER SOLVERS

- Leverage Boolean satisfiability (SAT) technology
 - SAT solvers experiencing similar dramatic improvement
- Better SMT solvers
 - Lift SAT-based techniques to word level
 - Develop hardware-aware formal theories and solvers
 - SMT in the cloud leveraging massive parallel computing
 - Machine learning for automatic solver tuning

CONCLUSION

- Tomorrow's formal techniques will achieve unprecedented automation and scale
 - Innovation driven by open-source tools and hardware
 - New models for AMS
 - Integrated design and verification
 - Symbolic QED and Instruction-Level Abstraction for specification-free verification
 - Breakthroughs in back-end solver technology will drive larger and larger capabilities

PETER RYSER

SR. DIRECTOR – SOFTWARE & VALIDATION XILINX, INC

XILINX LEGACY: A HISTORY OF INNOVATION & INDUSTRY FIRSTS

World's First Fabless Semiconductor Company

First ASIC-Strength Design Suite

World's First FPGA

First Multi-Processing SoC (MPSoC)

First integrated processor in an FPGA

SDx Development Environments

First HW/SW Programmable SoC

First RFSoC

World's First 2.5D IC FPGA

Acceleration Stacks & Frameworks

"Firsts" Require High Quality

DRIVING ADAPTIVE COMPUTING WITH NEW DEVICE CATEGORY

ADAPTIVE COMPUTE ACCELERATION PLATFORM (ACAP)

Dynamically Adaptable to Workloads

- > Adapts with programmable fabric
- > Dynamic reconfiguration for diverse applications

Exponential Increase in Acceleration

- > 20X AI compute capability
- > 4X communication bandwidth for 5G

Fully Software Programmable

- > Network-on-Chip & SW/HW accelerations engines
- > Ease-of-programming for both HW and SW developers

Project Everest

World's First ACAP (7nm)

THE EVOLUTION OF COMPUTING

Trend to Heterogeneous Architectures with Acceleration of New Workloads in All Markets

Mainframe ERA

M's Units

PC Era

100M's Units Mobile Era

B's Units

Pervasive Intelligence Era

50B Units

RELATIVE COST OF A BUG

- Bugs found late are costly
 - Hard to debug
 - Limited options to fix
 - Increasing mask costs
- Do more block and system testing much earlier in the development cycle
 - Test patterns
 - Software development and validation

Early Validation is a Key Enabler for a Successful Silicon Program

SW AND SILICON VALIDATION - SPEED VS VISIBILITY VS DEBUG

Emulator

Execution Speed Tests/s Aggregate Instructions/s Visibility / Finds Issues Cost per Bug

~1 MHz 1 100 Great / Least High

Silicon Validation

Execution Speed Tests/s Aggregate Instructions/s Visibility / Finds Issues Cost per Bug 1.5 GHz 1500 15,000,000 Least / Best Highest

Multi-FPGA Prototyping

Execution Speed Tests/s Aggregate Instructions/s Visibility / Finds Issues Cost per Bug ~10 MHz 10 75,000 Okay / Great Medium

➤ Different Environments Offer

- Different Levels of Visibility
- · Different Levels of Speed
- Different Levels of Debuggablity

➤ Productivity Factors

- Easy migration of test cases between environments
- Build test systems out of the same RTL source base
- Run software as fast as possible
- Quickly root cause issues

Virtual Platform

Execution Speed Tests/s Aggregate Instructions/s Visibility / Finds Issues Cost per Bug 500 MHz 500 5,000,000 Okay / Good Low

Focus for POSH

XILINX & POSH

- Provide tools/mechanism for a fast, low-cost, system-level Simulation, Verification and Debug environment that includes Hardware and Software
- Use and enhance Open Source software (QEMU)
 - · Build bridges for full system simulation
 - Co-simulate software and hardware
 - Support of heterogeneous systems
 - System-level debug

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA)

SUMMARY

- Systems are increasingly heterogeneous
 - Mixing of traditional CPUs with accelerators
 - Connected together through the Cloud
- Verification space is rapidly expanding
 - Need to faster and better verify entire systems
 - Move the development and verification of accelerators to the software engineers
- Verification environments need to be flexible and connected
 - Not just at chip-level but at system and cloud level

CHRIS TICE

VP, VERIFICATION CONTINUUM SOLUTIONS SYNOPSYS

AUTONOMOUS DRIVING ESCALATES COMPUTING CYCLE NEEDS

Environment Cameras, Radars, LiDARs

Sensing and Perception

Planning

Actuating

Position GPS

Sensing driving environment Recognizing obstacle Localization Road detection

Recognizing environment Making decision Generating and optimizing path

Visualizing

Data

Autonomous Driving Scenario

Autonomous Driving Compute Requirements

>1,000,000 DMIPS

Autonomous Driving – **ADAS**

5x10⁶ DMIPs @ 6 Cycles/ Inst

30x10¹² cycles/sec

3 minutes of ADAS

5.4x10¹⁵ cycles

EXPANDING ELECTRONIC SYSTEM REQUIREMENTS

Driving Verification Challenges

Fast Growing Segments

Data Center & Edge

Automotive

IoT

5G Mobile

ΔΤ

EXPANDING ELECTRONIC SYSTEM REQUIREMENTS

Driving Verification Challenges

New Challenges

Ubiquitous Connectivity More Complex SoCs System Abstraction into SW

Platform Hardening

EXPANDING ELECTRONIC SYSTEM REQUIREMENTS

Driving Verification Challenges

Ubiquitous Connectivity More Complex SoCs System Abstraction into SW

Platform Hardening

TTM Goals Require Shift-Left Solutions

Integrity, Safety, Security

System & SW

Verification

Design

Expanding Scope: Schedules Shift Right

ADDRESSING THE SW CYCLES GAP

Redefining Emulation to Address Growing Software Content

FPGA-BASED EMULATION ENABLES PETACYCLE WORKLOADS

POSH NEEDS AND SYNOPSYS TECHNOLOGY SOLUTION

Need

 Efficient early software bring-up & verification of Analog Mixed-Signal SoC designs

Novel Mixed-Signal Emulation Solution

- New mixed-signal methodology
- New set of emulation SW technologies
- Achieves MHz+ speeds on existing commercial FPGA-based emulation HW

Scalable Technology

 Converging digital & analog IP/SoC designs into emulation HW for 100x performance gain vs. simulation

POTENTIAL ANALOG SOLUTIONS

Existing Verilog AMS co-simulation flow

 Co-simulation: Analog solver and digital simulation kernel run side-by-side

Proposed AMS technology

- SPICE netlist conversion to real number model (RNM) / discrete time digital approximation
- RNM emulation software tool & methodology (RNM already supported by VCS)
- Automatic AMS assertion generation

LEADERS TEAM UP TO ADDRESS POSH PROGRAM

Lockheed
Martin
Sub-contractor

Analog Devices

Analog Circuit Works, Inc.

Consultant

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA)

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government

software

Verification IP Design Silicon

Thank You

SYNOPSYS®

silicon

